
UCRL-JC-138518 
PREPRINT 

Application of Parallel Implicit Methods to Edge-Plasma 
Numerical Simulations 

T.D. Rognlien 
X.Q. Xu 

A.C. Hindmarsh 

This paper was prepared for submittal to 
Physical Review E 

April 12,200O 

undekandkg that it will not be cited or reproduced without the permission of the 



DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of 
the United States Government. Neither the United States Government nor the 
University of California nor any of their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or the University of California, and shall not be used for advertising 
or product endorsement purposes. 



Application of Parallel Implicit Met hods to Edge-Plasma 

Numerical Simulations 

T.D. Rognlien, X.Q. Xu, and A.C. Hindmarsh 

Lawrence Livermore National Laboratory 

Livermore, CA 94551 

A description is given of the parallelization algorithms and results for two codes used ex- 

tensively to model edge-plasmas in magnetic fusion energy devices. The codes are UEDGE, 

which calculates two-dimensional plasma and neutral gas profiles. and BOUT, which cal- 

culates three-dimensional plasma turbulence using experimental or UEDGE profiles. Both 

codes describe the plasma behavior using fluid equations. A domain decomposition model 

is used for parallelization by dividing the global spatial simulation region into a set of do- 

mains. This approach allows the use of two recently-developed Newton-Krylov numerical 

solvers, PVODE and KINSOL. Results show an order of magnitude speed up in execution 

time for the plasma equations with UEDGE. A limitation that is identified for UEDGE 

is the inclusion of the (unmagnetized) fluid gas equations on a highly anisotropic mesh. 

The speedup of BOUT is closer to two orders of magnitude, especially when one includes 

the initial improvement from switching to the fully implicit Newton-Krylov solver. The 

turbulent transport coefficients obtained from BOUT guide the use of anomalous transport 

models within UEDGE, with the eventual goal of a self-consistent coupling. 



Contents 

I Introduction 2 

II Equations, Geometry, and Algorithms 

A Basic equations .................................. 

B Geometry ..................................... 

C Implicit Algorithms ................................ 

D Domain Decomposition Model .......................... 

III Implementation and Results for UEDGE 

A Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . 

B Results....................................... 

IVImplementation and Results for BOUT 

A Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . 

B Results........................................ 

V Conclusions 

5 

5 

6 

6 

8 

10 

10 

11 

13 

13 

15 

17 

I. Introduction 

The goal of this work is to develop a numerical codes for simulation of edge plasmas 

for magnetic fusion energy (MFE) d evices that exploit the power of parallel computers. 

Understanding edge plasmas is central to the problems of high heat flux from plasma power 

exhaust, adequate helium-ash removal, and maintaining sufficient edge temperature to re- 

duce turbulent core transport, all recognized as critical issues for magnetic fusion reactors. 

Proper assessment of these issues requires detailed computer codes. The last several years 

have witnessed a period of unprecedented growth in the computer power available for mod- 

eling physical problems. To utilize this computational power, one needs to make the shift 



from coding for single-processors to coding for multi-processor computers. For codes with 

explicit time advancement, this shift is rela.tively straightforward because only local quanti- 

ties enter expressions for the solution at ea,ch time step. However, many physical problems, 

including fusion edge plas~ms, conta.in various phenomena. that yield a wide range of time 

scales which render the equations describing them “stiff” in the numerical sense. Here, im- 

plicit methods are especially useful, but implicit methods are inherently nonlocal spatially 

and thus present a bigger challenge for parallelization compared to explicit methods. 

The simulation of edge-plasmas has many time scales because of the simultaneous mod- 

eling of ion and electron transport along and across a confining magnetic field, together 

with neutral particle processes. Here we describe the parallelization of two codes that simu- 

late the edge-plasma region: UEDGE’ solves for the slowly-evolving two-dimensional (2-D) 

profiles of a multi-species plasma and neutrals given some anomalous cross-field diffusion 

coefficients, and BOUT2 solves for the three-dimensional (3-D) turbulence that gives rise 

to the anomalous diffusion. These two codes are thus complementary in solving different 

aspects of the edge-plasma transport problem; UEDGE needs BOIJT’s turbulent transport 

results, while BOUT needs UEDGE’s plasma profiles. Each code can take from a day t.o 

weeks on single-processor computers for large problems. An essential step to coupling these 

calculations is speeding up their individual execution times since many iterations may be 

needed for a consistent solution. 

This parallelization work benefits greatly from the development of two parallel implicit 

e3 solvers by Hindmarsh and Taylor. PVODE solves a system of time-dependent ordinary 

differential equations (ODES), and KINSOL solves a system of nonlinear equations typically 

aimed at finding steady-state solutions. The serial versions of these Newton-Krylov solvers, 

VODPK4 and NI(SOL,5 have been used very productively for the serial version of UEDGE. 

However, for such solvers to work well for UEDGE, our experience on serial computers 

shows that the system of equations must be well preconditioned. The preconditioning step 

is to solve a closely related problem in a more efficient but approximate manner. which, in 

effect, serves as a guess for the final solution. 4,5 Thus, part of our work for UEDGE focuses 

on development of a parallel preconditioner based on a domain decomposition model. This 

Fortran preconditioner is interfaced to the C-language solvers PVODE and KINSOL on a 

variety of parallel computer platforms from the massively parallel T3E computer to shared- 



4 

memory workstations with multiple processors (SUN and DEC). This aspect of our work 

demonstrates, for a complex problem, how one can reuse existing Fortran coding, and with 

moderate extensions, utilize recently developed implicit parallel solvers. 

Another element of portability is provided by implementing message passing between 

multiple processors by using the MPI package. 6 This package is available on many different 

platforms and allows one to utilize either shared memory or individual processor memory 

without changing the code. With MPI, one can now use processors on one computer or a 

network of computers. Also, the serial version of UEDGE has been made very productive 

through the use the BASIS system, ’ but this programming and computing environment 

is not available on all computer platforms. This problem has been alleviated by recent 

development by Grote l1 of a conversion capability from BASIS to the more widely available 

PYTHON system,” and application of that conversion to UEDGE by Yang.12 

The 3-D BOUT code is parallelized using the same general domain-decomposition model 

as UEDGE, but our emphasis for BOUT is somewhat different. First, since BOUT must 

follow the rapid fluctuations of the turbulent fields, we compare two fully implicit schemes 

for advancing the equations in time and show how the scheme using the Newton-Krylov 

method is much superior to functional iteration. Second, we find that the implicit BOUT 

works well without a preconditioner. This latter fact leads to the straightforward paral- 

lelization of BOUT with a nearly linear speedup in computational time with the number of 

CPU processors. In contrast to UEDGE, which often takes very large time steps to find an 

equilibrium and needs a preconditioner, the good performance of BOUT without a precon- 

ditioner is related to the smaller time step required to resolve the turbulent fluctuations. 

Like UEDGE, the parallel version of BOUT uses MPI for portability. 

The plan of the report is as follows: In Sec. II, the geometry and basic equations for the 

edge-plasma problem are given. The domain decomposition model used for UEDGE and 

BOUT is described in Sec. IID. The results for the UEDGE parallelization are shown in 

Sec. III. The BOUT results from the fully implicit solver and parallelization are given in 

Sec. IV. The conclusions are summarized in Sec. V. 



5 

II. Equations, Geometry, and Algorithms 

A. Basic equations 

The basic models in the UEDGE and BOUT codes are obtained from the plasma fluid 

equations of continuity, momentum, and thermal energy for both the electrons and ions as 

given by Braginskii. l3 The continuity equations have the form 

; + v * (n,,p,,;) = sep; (1) 

where n,,; and v,,i are the electron and ion densities and mean velocities, respectively. The 

source term S$ arises from ionization of neutral gas and recombination. 

The momentum equations are given by 

av, i 
76%,i at 2 + me,iG,iVf+i ’ vve,i = -V~e,i + qn,,i(E f Ve,i X B/C) - Fe,; - R,,; + S$. (2) 

Here m,,; are the masses, lje,i = ne,;Te,; are the pressures with Te,; being the temperatures, 

q is the particle charge, E is the electric field, B is the magnetic field. c is the speed of 

light, Fe,; = V . III,,; are the viscous forces, and R,,; are the thermal forces.13 The source 

S$ contains a sink term -nm;,,v;S<, which arises if newly created particles have no drift 

motion. 

The ion and electron energy equations can be written in the form 

3 6’T,; 3 
sn$ + 2nve,i * VT,,; + Pe,iV * v,,; = -V . q,,; - TJ[,,i * VV,,; + Qe,i. 

Here, q,,i are the heat fluxes, and Qe,i are the volume heating terms.13 

(3) 

In their general three-dimensional form, the six equations given above represent ten 

separate partial differential equations for n,, n;, v,, vi, T,, and T;. UEDGE and BOUT 

use somewhat different assumptions to reduce the complexity of their models. To calculate 

the electrostatic potential, 4, both codes use the quasineutral condition, 72, = ni, and in 

addition, BOUT solves for the parallel magnetic vector potential, Ali. Also UEDGE assumes 

symmetry in a third dimension, usually the toroidal direction for a fusion device, whereas 

BOUT allows fluctuations to have variations in all 3 spatial dimensions even though the 

equilibrium profiles are toroidally symmetric. 



B. Geometry 

Both UEDGE and BOUT are written in general coordinates that can be adopted to a 

slab, cylinder, or torus by the use of the appropriate metric coefficients. For MFE fusion 

devices, we have been most interested recently in toroidal devices with an emphasis on 

tokamaks.14 The region occupied by the edge plasma for the poloidal plane of a tokamak 

with a single-null divertor is shown in Fig. 1. The long, sometimes closed lines of the 

mesh represent poloidal magnetic flux surfaces in which the magnetic field vector lies. For 

tokamaks, the strongest magnetic field component is in the toroidal direction, out of the 

plane of the figure. 

UEDGE and BOUT use the the poloidal flux surfaces as one spatial coordinate. The 

second spatial coordinate is often the curves normal to the flux surfaces also shown in Fig. la, 

but a nonorthogonal mesh is sometimes used to form the mesh along material surfaces at 

the boundary. For UEDGE, this specifies the 2-D coordinate system and all quantities are 

assumed uniform in the third direction. However, BOUT allows fluctuations to arise in the 

third toroidal direction, even though the equilibrium is uniform. Here. a segment of the 

torus is simulated as shown in Fig. lb, which is then assumed to be periodically replicated 

to fill out the full torus. Thus, the wavelength of the longest toroidal mode simulated is set 

by the length of the toroidal segment used. 

The numerical discretization schemes used by UEDGE and BOUT are similar in the 

two dimensions in the poloidal plane. UEDGE uses a conservative finite-volume method 

and BOUT uses a finite difference method including a fourth-order spatial discretization 

for the nonlinear E x B inertial velocity terms. 

C. Implicit Algorithms 

The fluid equations solved by both UEDGE and BOUT can be cast in the most general 

form in terms of a system of ODES 

gy = f(u) (4 

where u is the vector of unknowns, and f is the result of sources, sinks, and the discretized 

spatial transport. Since UEDGE is usually seeking steady-state solutions, it strives to take 



7 

the maximum time step (At) possible and sometimes works in the limit of Al + co. BOUT 

always follows time-dependence, but we wish to do so with optimum efficiency. This section 

sets the background for understanding the algorithms used for UEDGE and BOUT in the 

later results sections (Sec. III and Sec. IV). 

We consider two implicit schemes, one utilizing functional iteration and the other using 

the Newton-Krylov approach. Our codes presently use the Newton-Krylov method, but 

introducing the functional iteration method allows us to make a comparison later in the 

paper. These schemes are exemplified by the the Adams method and the Backward Differ- 

entiation Formula (BDF) method, respectively. r5 For the Adams method, the advancement 

of u from time level n - 1 to n takes the form 

U - un-I + At(aofn + . . . + ak-lfn--li+l) n- 6) 

where k is the order of the scheme, the o’s are coefficients, and f, E f(un). For the BDF 

method, the advancement is given by 

U n = (P,u,-I + . . . + P/tun-/c) + Atyofn (6) 

where the p’s and y. are coefficients determined by the order (/c) used. The Adams method 

is usually solved by functional iteration, i.e., an approximation to u, at iteration j, termed 

uj,, is obtained by evaluating f, with un j ‘; this approach can work well for non-stiff systems. 

While the BDF method can also use functional iteration, a more effective method is often 

a Newton iteration which expands f, at iteration j as 

f(d) z f(lk’) + %(uj - d-l). (7) 

Equation (6) then is a linear equation for uj, which can be written as 

(I/A&y0 - J)uj, = g @I 

where I is the identity matrix, J E df/& is the Jacobian evaluated with u from a previous 

iterate or time step. Also, g is a vector which depends on values of u from the p;tst iteration, 

uj-i, and at previous time steps as obtained from Eqs. (6-7). Equation (8) is usually solved 

by an iterative method to an accuracy somewhat better than the estimated error in u,-~ 

from the time advancement; this is known as a,n inexact Newton method. We shall use a 

Krylov projection method to solve the linear system. 417 Although more work is required for 



8 

such Newton methods per iteration, they often have superior overall performance for stiff 

ODES since larger time steps can be used, as we shall illustrate with a BOUT code example. 

Also, UEDGE requires the inexact Newton method for reasonable performance, and it also 

requires that the system of equations be preconditioned. 

Newton schemes that utilize a matrix-free Krylov projection method often require pre- 

conditioning. 417 The procedure requires the ability to solve related linear systems Pw = h 

with a matrix P which approximates the original matrix, but is simpler to solve. By as- 

sumption, P - (I/Atyu - J). Noting that P-lP = I, we may insert this product into 

Eq. (8) to form the preconditioned system 

[(I/‘Aty, - J)P-‘](Puj,) = g. (9) 

The new variables are Pu,, and this system is easier to solve by iterative methods such 

as the Krylov method since (I/Atyn - J)P-’ f A - I is more diagonally dominant. The 

Krylov method does require matrix-vector products of A(Pu,), and these are done in a 

matrix-free manner with a finite-difference quotient approximation to Jv.~ 

D. Domain Decomposition Model 

Because UEDGE and BOUT use the same poloidal mesh, this region can be divided 

into domains on parallel computers where separate processors can solve a local problem. 

However, for the toroidal edge-plasma problem, there is a set of natural interior boundaries 

that need to be identified and accommodated for efficient decomposition. The regions 

delineated by these interior boundaries are shown in Fig. 2 for both the poloidal geometry 

and the corresponding mapping to a rectangular domain. Information needs to be passed 

from cells that touch one of the dotted lines between the private-flux and core regions to 

the cells along the other dotted line, and vice versa. These interior boundaries are used to 

account for the periodic boundary conditions used within the core region a.nd the continuity- 

of-flux condition between the private-flux region 3 and private-flux region 4. 

If the selection of the domains is such that the boundaries of major regions 1-4 in 

Fig. 2 are always included in the boundaries of the domains, then the finite difference 

representation in a given domain can be entirely local. Such a domain decomposition is 

shown in Fig. 3a where sixteen domains are used in the poloidal plane. 



9 

The information needed to form the local finite-difference approximations to the deriva- 

tives at the boundary of the domains is provided by passing the variable data between 

processors (domains) via MP16 in order to fill the guard cells that surround each domain 

shown in Fig. 3b. Notice that data needed in a guard cell is not necessarily from the adja- 

cent domain; e.g., the right-side guard-cell data for domain 0 in Fig. 3a comes from domain 

3. These guard cells do not contain variables that are advanced for each doma.in, but rather 

only contain a copy of this information from other processors. The only exception to this 

rule is for UEDGE which uses exterior guard cells to specify boundary conditions; but here 

the boundaries conditions are local, so no message-passing between domains is required. 

The domain decomposition plays two roles. First, in order to utilize the implicit PVODE 

and KINSOL solvers,3 we must divide the physical space of our codes in this manner, where 

each processor has all of the information required to solve the local problem. Because these 

Newton-Krylov implicit solvers use a local, finite-difference approximation to the Jacobian, 

there is no need to invert a global matrix. The second use of the domain decomposition 

model is that it provides the basis for the preconditioning algorithm which is required by 

UEDGE. Here the full set of Jacobian elements can be efficiently generated in parallel 

for each domain using all of the processors. However, to obtain a preconditioner, one 

needs to approximate the inversion of the Jacobian which is more nonlocal than the Krylov 

approximation. To do this, we perform an approximate LU decomposition of the Jacobian 

using ILUT7 routines independently on each processor. This procedure of not including 

coupling between domains at the preconditioning level is referred to as the additive-Schwartz 

method.8 

The manner in which UEDGE utilizes the solvers PVODE and KINSOL can be most 

succinctly explained by the diagram in Fig. 4. On the left is the main UEDGE calculation 

of the finite-difference equations that yield the “right-hand side” of th,e evolutionary equa.- 

tions for each variable. In addition, UEDGE provides a local preconditioning Jacobian on 

each processor by approximating derivatives with finite-difference quotients. This operation 

should not be confused with the finite-difference approximation used by the PVODE and 

KINSOL Krylov solvers. In the central column of the diagram are the wrappers mentioned 

previously which pass data from the Fortran UEDGE code to the C solvers, and vice versa. 

Finally, on the right is one of the C solvers, PVODE or KINSOL, which have been devel- 



10 

oped previously. 3 Note that the foregoing model is replicated for all domains or processors. 

Communication between processors as required to fill that gua.rd cells is shown by the “mpi 

send and receive” boxes in Fig. 4. 

The parallel model for BOUT is very similar to that just described for UEDGE, except 

that BOUT is written in C and thus requires no extra interface routines to utilize the C 

solvers. Since BOUT must follow the time-dependence, only the PVODE solver is used 

here. Also, as mentioned earlier, BOUT works well without a preconditioner. Some work 

has been done on testing preconditioners for even more improvement, but more development 

is needed here. 

III. Implementation and Results for UEDGE 

A. Implementation 

The 2-D plasma transport equations used in UEDGE come from a reduction of those 

presented in Sec. IIA for the parameters of the edge plasma. This results in five equations 

for the following variables: ion density, n;; ion parallel velocity, ‘~11; separate electron and ion 

temperatures, T, and Ti; and the electrostatic potential, 4. In addition, impurity species can 

be included which have their own density and parallel velocities but a common temperature, 

Ti, with the ions. Furthermore, neutral gas species are present, which can be described by 

various models; the simplest is a diffusion model, where the neutral density, n,, obeys the 

continuity equation 

Here the neutral velocities, D,,,,~, are taken from a diffusion approximation using the 

charge-exchange collision frequency between ions and neutrals, and the source and sink 

terms on the right-hand side represent recombination and ionization with rate coefficients 

(a,.~,) and (giu,), respectively. We find t.hat the parallelization of this neutral gas equation 

on the highly anisotropic mesh performs more poorly than the plasma equations, a point 

we will return to in the results section. 

With UEDGE, we seek efficient steady-state solutions, while still retaining the options 

to simulate time-dependent evolution of the profiles when needed. Using large time steps, or 



11 

performing nonlinear iterations to stea.dy state with no time step, requires the use of a good 

preconditioner. The most effective preconditioner is forming the full Jacobian matrix by 

finite-difference quotients as mentioned previously. We now have two options for the parallel 

UEDGE, either using an algorithm developed within UEDGE, or because each domain 

with guard cells is now self-contained, we can use the band-block-diagonal preconditioners 

PVBBDPRE and KINBBDPRE supplied as part of the PVODE and KINSOL packages, 

respectively.3 

To implement the domain decomposition model, we have written a routine that auto- 

matically divides the global mesh in a manner that respects the “natural” boundaries shown 

in Fig. 2. One can specify the number of sub-domains in each of these regions, and the 

algorithm works to optimize the load balancing by having any imbalance in the number of 

equations per domain being relegated to a minimum number of processors which do less 

work than the average. In this way, most processors do not need to wait for the unbalanced 

ones with fewer equations to finish. Usually, we strive for complete load balancing by a 

proper choice of mesh sizes and number of domains. The newly written routine also sorts 

through the indexing for the guard cells and provides a map to specify which processors 

must exchange boundary data. A set of routines was developed that deals with passing 

data from the master processor to domain processors. This data includes the initial guess 

to the global solution, the global geometrical data, and the mapping index for the guard 

cells needed for each domain. A similar routine is used to gather the data from all the pro- 

cessors into a global solution at the end of the run. Finally, another set of message-passing 

routines was constructed to refresh the guard cell data at the appropriate times during the 

Jacobian and Newton-Krylov steps. 

B. Results 

We have run UEDGE on the T3EGOO using the 16 domain configuration shown in 

Fig. 3 for the full DIII-D tokamak geometry in Fig. la. The computation mesh has S4 

poloidal mesh points and 48 radial points. The input parameters used at the core boundary 

are Te,i = 150 eV, 71; = 2 x 101’ rne3, and zero parallel velocity. The anomalous radial 

diffusion coefficients are set to 1 m2/s and the plate particle recycling coefficient is 0.9. 

The simulation is initialized with a solution obtained for a Tc,; = 100 eV on the core 



12 

boundary, and we then measure computer time required to find the solution when we 

switch to T+ = 150 eV on the core boundary. The execution time normalized to that for 

one processor is presented in Fig. 5. Here PVODE was used to run to steady state with the 

pla.sma equations, and two different preconditioners were used, the case marked X being 

PVBBDPRE, and the + point being the internal UEDGE preconditioner. In the table below 

the figure, the tabulated data shows the number of function (or right-hand side) evaluations, 

the number of preconditioners, the normalized time, and the ideal time. Although the speed 

of the calculation depends somewhat on the preconditioner used, experience with various 

approximate preconditioners on serial computers indicates that both are working well; errors 

in the preconditioner typically result in an inability to obtain a solution with UEDGE. 

The difference in the speedup results from the two preconditioners in Fig. 5 is due 

primarily to the frequency with which they are updated. Note from the table in Fig. 5 

that the PVBBDPRE case (labeled X) 1 ras only about l/3 of the preconditioner evaluations 

compared to the + data point with the UEDGE preconditioner. As a consequence, the X 

data point has almost twice the number of overall function evaluations from PVODE. Thus, 

the results from the two preconditioners indicate the sensitivity of the trade-off between 

more frequent preconditioner evaluations (and LU decompositions), and fewer Newton- 

Krylov iterations as reflected in the function evaluation count. The extra work required 

because the preconditioner is only solved locally on each domain and thus does not include 

domain-coupling information is reflected in the lower number of function and preconditioner 

evaluations for the 1 processor base-case. 

While it is encouraging to obtain nearly an order of magnitude speed up for the plasma 

equations in UEDGE, the relatively simple gas equation shown by Eq. (10) proved more 

difficult. This problem has been traced back to the highly anisotropic mesh shown in 

Fig. 1.16 This mesh is chosen to best represent the plasma which flows rapidly along the 

long flux surfaces and transports slowly across the magnetic flux surfaces owing to magnetic 

confinement. However, the gas evolving from the divertor plates does not experience a 

magnetic force and is not preferentially confined to the flux surfaces. We have studied 

this problem in some detail for a simple gas diffusion problem outside the actual tokamak 

geometry and find the same difficulty. We believe that providing more overlap information 

in the preconditioner should allow this problem to be overcome, such as using a Schur 



13 

complement method. %17 Also, when coupling to a Monte Carlo neutrals code for the gas 

description, l8 this issue goes away, and one gets the added benefit that Monte Carlo codes 

parallelize very well. On the other hand, one must then achieve convergence of the separate 

plasma and neutral descriptions by an iteration procedure.lg 

IV. Implementation and Results for BOUT 

A. Implementation 

For edge-plasma turbulence, the application of a fluid model is reasonable in part be- 

cause of the low temperature and high collisionality. While the unstable modes can have 

wavelengths short compared to the scale lengths of equilibrium profiles, the dominant modes 

have perpendicular wavelengths which are larger than the ion gyroradius, ps, consistent with 

a fluid approach. Thus, it is again appropria.te to use the Braginskii fluid equations as pre- 

sented in Sec. IIA. By scaling arguments, the full set of fluid equations can be reduced to a 

seven-variable set for the electrostatic potential, 4; magnetic vector potential, Ali; plasma 

density, n;; electron and ion temperatures, T, and Ti; and electron and ion parallel veloci- 

ties ‘u,,iII. The parallel current, jll, and vorticity, ~7, are intermediate variables used to help 

solve the system. The equations for all of the variables satisfy time-evolutionary equations, 

except for 4 and All. These potentials satisfy similar equations: 

v”l(b = w 

4n 
V2,A,, = -,j,,. 

(11) 
(12) 

The 4 potential equation is not obtained from Poisson’s equation, but rather from the 

quasineutrality condition and the current continuity equation. Here ‘7: refers to the Lapla- 

cian operator in the directions perpendicular to the magnetic field. It is the solution to these 

rather simple looking equations that has important consequences for the parallel version of 

BOUT. 

In order to efficiently simulate turbulence with short perpendicular wavelengths com- 

pared to parallel wavelengths (i.e., for wavenumbers $1 << lcl), we choose field-line-aligned 

ballooning coordinates, (x, y, z), which are related to the usual flux coordinates’4 ($J, 0, ‘p) by 

the relations z = +-+,,, y = 8, and z = 9-J ~(5, y)dy. Here v E a,Bt/RB,, where a, is the 



14 

effective minor radius, R is the major radius, and &,, are the toroidal and poloidal magnetic 

fields, respectively. The partial derivatives are: 13/a@ = d/dz - (J Dv/8$)3/dz, s/80 = 

d/dy-vapz, d/&2 = a/a z, and VII = (B,/u,B)8/~y. Tl re magnetic separatrix is denoted 

by $ = djs. Here the key ballooning assumption is Id/dyl << Ivd/d.zl and a/&J 2 -vd/dz. 

In this choice of coordinates, y, the poloidal angle, is also the coordinate along the field 

line. 

In the most general case, the solution to Eqs. (11-12) re uires a three-dimensional solver q 

since one of the perpendicular directions is composed of the poloidal and radial components. 

However, utilization of the ballooning assumption with short toroidal wavelengths reduces 

the potential equations to two dimensions in the radial and toroidal directions by consid- 

ering modes where 8180 z -vd/d.z as discussed in the previous paragra.ph. Since the 

potential equations then do not depend on the poloidal coordinate, it is efficient to divide 

the parallelization domain in this direction. The technique for solving Eqs. (11-12) is to 

perform Fast-Fourier Transforms (FFT) in toroidal direction and finite differences in the 

radial direction. Because these potential equations are linear, the solution for q and Ali 

only requires a tridiagonal inversion in the radial direction a.nd the FFT; both operations 

are localized to each poloidal domain. 

To study realistic problems, BOUT obtains magnetic geometry data and plasma profiles 

from global data files written by UEDGE. The magnetic data comes ultimately from an 

MHD equilibrium code and the plasma background profiles can be from a UEDGE solution 

or an analytic fit to experimental data. On a parallel machine, a pointer variable is set so 

that each processor only reads a subset of the data needed for its domain. Similarly, each 

processor writes and reads its own dump-file for the data in its domain which later can be 

used to restart or continue the problem. Presently, a restarted problem needs to use the 

same number of processors as the original problem. For post-processing, another program 

collects the data from a set of the dumped data files generated by BOUT, and generates a 

single file for the global solution. 



15 

B. Results 

For the BOUT simulations, we also choose parameters corresponding to the edge-plasma 

of the DIII-D tokamak.20 The system has the following basic parameters. The computation 

mesh has 64 poloidal, 64 toroidal, and 40 radial points. The equilibrium plasma profiles are 

taken from hyperbolic tangent fits to the DIII-D experimental data (discharge # S9840) 

at the midplane for plasma density n;n, electron temperature Tee, ion temperature Tin, the 

electric field profile, and zero parallel velocity. The midplane temperature and density on 

the separatrix are T,o = 58 eV, Tie = 50 eV, and n;n = 1.7 x 10” rne3. We first compare 

two implicit methods of advancing the equations in time as discussed in Sec. IIC: one 

is the Adams functional iteration and the second is the inexact Newton method utilizing 

matrix-free Krylov projections. The simulations are begun with a small fractional noise 

component (- 10v5) which evolves into fully developed turbulence. The estimated local 

relative-error tolerance for each of the cases is set to lo-“. The resulting time-step history 

of the two methods is shown in Fig. 6. At the beginning, both methods show small time 

steps, but soon, the Newton-Krylov method is able to expand its time step by a factor of 70 

compared to the functional-iteration Adams method for the same a.ccuracy. In the nonlinear 

stage of the simulation where different wave modes are strongly coupled, the Newton method 

reduces its time step by about l/2 to satisfy the accuracy constraint. In fact, this simulation 

includes the shear in the magnetic equilibrium near the X-point which was a problem that 

we could not integrate successfully with the previous predictor-corrector method (a one-step 

functional iteration). Thus, using the Newton-Krylov method has become an essential part 

of our generalized BOUT simulations. 

The complete picture requires that the total computational work for the two methods be 

considered. These results are given in Table 1 for the linear stage of the simulation shown in 

Fig. 6. Here the number of right-hand side (RHS) evaluations represents the large majority 

Met hod # RHS eval # time steps Ave. time step At order 

Func. iter. 6212 5756 1 x 1o-2 1 

Newton 1091 115 7 x 10-l 3-4 

Table 1: Comparison of functional iteration (Adams) and Newton-Krylov parameters in 

linear stage 



of the computation time required, and the ratio of the numbers in this first column thus 

gives a. approximate measure of the relative speed of the methods; for this example, the 

Newton method is thus N 6 times’more efficient. The time step is measured in terms of the 

inverse ion-cyclotron frequency, l/WC-, and the average value quoted is that after the very 

early transient where At increases rapidly. The order of the integration scheme is equal to 

the number of previous values of the RHS or of the variables used [see I; in Eqs. (5-G)]. The 

value of k for the Newton method is chosen by PVODE to optimize performance, whereas 

we prescribe k = 1 for the functional iteration method to mimic typical integration methods. 

We find that allowing k > 1 for the functional iteration method does not significantly change 

the performance for our cases. 

In order to extend these improvements to parallel machines, we developed a parallel 

version of BOUT based on domain decomposition as described in Sec. IID. Because the po- 

tential equations, Eq. (ll-la), are independent of the poloidal dimension in the ballooning- 

coordinate representation, the most effective choice of domains are those which segment 

the poloidal direction. Thus: in referring to Fig. 3, this would consist of removing the hori- 

zontal dotted lines, and combining domains (0,4,S,12), (1,5,9,13), etc. Using these poloidal 

domains, the solution of Eqs. (11-12) can be done entirely on each domain without regard 

to the other domains. Then, only message-passing is required to fill the guard cells of each 

domain in order to use PVODE. 

The effectiveness of the parallel BOUT code on a SUN Wildfire system is shown in Fig. 7. 

This parallel system has 16 processors per machine, 3 machines, and shared memory. Here 

and elsewhere, the speedup time refers to wall-clock time, but this is typically close to the 

CPU time. Note that the speedup is nearly linear on one machine, with a small degradation 

at 15 processors (15 rather than 16 because of load balancing for this given problem). 

However, when going to 30 processors, the speedup drops dramatically. This is caused 

by either slow message passing between machines compared to that between processors of 

one machine, or non-optimization of scheduling, issues which are being investigated. Also, 

we have used the MPICH implementation of MPI, whereas the use of SUN MPI may give 

improved performance on this SUN system. Nevertheless, the speedup with 15 processors 

is a factor of 13, which is very useful. Note that a data point is also shown for the DEC 

cluster at LLNL for 1 processor. BOUT is somewhat faster on the DEC cluster than the 



17 

SUN cluster for our problem using 1 processor. But more significantly, it is quite slow in the 

parallel mode because of scheduling issues, which prevent us from simultaneously obtaining 

all the processors (10) f or even one machine in the 8-ma.chine cluster. The scheduling issues 

are likely to be resolved and do not represent a fundamental limitation. 

When this same problem is run on the T3E-900 at NERSC, one can more effectively 

study the behavior from 15 to 60 or more processors, and the results, shown in Fig. 8, are 

even more impressive. One can see that the speedup is actually super-linear over the range 

considered when normalized to the case using 5 processors, which is the smallest number 

of processors we could fit this problem into. The super-linear behavior, or off-set linear at 

high processor number, is likely caused by the speed of access to different types of CPU 

memory available on the T3E. For the 5 PE case, the memory required per processor is 

significantly larger than that available in the fast cache memory, while for the 60 processor 

case, a larger percentage of the calculation can reside in the fast cache memory. The division 

of work for the 60 processor case is 81% for evaluating the BOUT physics equations, 12% 

for internal PVODE calculations, 6% for interprocessor MPI communications, and 1% for 

other overhead costs. The load balance between processors is very good with only a -1% 

variation. 

V. Conclusions 

We have succeeded in developing parallel versions of two workhorse codes to simulate 

edge plasmas in MFE devices: UEDGE for 2-D transport and profile evolution, and BOUT 

for 3-D turbulence. Both codes solve the magnetized plasma fluid equations, with UEDGE 

focusing on long-time evolution of the plasma profiles and BOUT dealing with short-time 

turbulence which causes anomalous radial transport. A similar domain decomposition model 

is used to achieve the parallelization where we then utilize the recently developed LLNL 

Newton-Krylov solvers PVODE and I<INSOL.3 

The parallelization of UEDGE has allowed us to obtain nearly an order of magnitude 

speedup in execution time for the plasma equations on 16 processors.16 Here we were able to 

reuse almost all of the original FORTRAN coding, although we did have to create a BASIS- 

free version of the code that could run on the T3E; with the automated conversion11112 to 



18 

PYTHON, this should not be needed in the future. We developed a domain decomposition 

model including an automatic decomposition routine and a number of messa,ge passing 

routines, plus tested and debugged interface routines with the PVODE and KINSOL solvers. 

The fluid gas equations do not parallelize as effectively as the plasma equations, because of 

the anisotropic mesh and lack of domain overlap in the preconditioner. There are overlap 

methods which should be assessed for this problem. Also, the coupling of the parallel plasma 

equations with a parallel neutral Monte Carlo code looks promising. 

The results for the BOUT 3-D code have exceeded our initial expectations. The conver- 

sion to the Newton-Krylov solver3 has produced a code which runs as much a,s 50 times faster 

compared to an Adams functional iteration method. In fact, the previous predictor-corrector 

method we used, which is even simpler than the Adams functional iteration method, could 

not be practically used for the simulations which include X-point shear from the equilib- 

rium magnetic field. These simulations are very important for understanding the behavior 

of present experiments and designing future devices.21l22 

The parallelized version of BOUT continues to work well with a poloidal domain de- 

composition, giving a factor of 13 speedup for 15 processors on the SUN Wildfire and a 

very encouraging factor of 69 speedup for 60 processors on the T3E-900. The degradation 

on the Wildfire system at 15 processors may be due to inefficient message passing resulting 

from the use of MPICH instead of SUN MPI. The super-linear speedup on the T3E is likely 

due to the better utilization of cache memory for the larger number of processors. Most 

recently, we have extended this case to 120 processor on the T3E, and find the data on 

the same off-set linear curve. The large speedup of BOUT gives real optimism concerning 

coupling UEDGE and BOUT. Previously, BOUT was very time consuming, which made 

such coupling seem far off; now it is a real possibility. 

There are two areas where more short-term improvements may be realized with BOUT 

performance. One is to extend the domain decomposition to the radial direction as in 

UEDGE. This will al!ow more domains as the number of allowable toroidal modes increases. 

Here we will deal with the coupling of the potential equations across the radial domains by a 

parallel tridiagonal solver23 or a Newton-Krylov solver using a preconditioner. The second 

area being focused on is to increase the time step of the PVODE integration further by 

providing a preconditioner for the time dependent equations. This gain does have limitations 



19 

in that we must still properly resolve the turbulence. Some simple preconditioners were 

tried without much improvement, but we know from our experience with UEDGE that 

preconditioners can be effective for the equations set we are using, and this warrants further 

investigation. 

Acknowledgments: This work was supported by the LDRD program at LLNL during 

Fiscal Years 1997-98 as project 97-ERD-045. We have benefited from many useful discus- 

sions with A.G. Taylor, and P.N. Brown. The simulations on the SUN Wildfire and DEC 

computers were performed at LLNL while the simulations on the T3E600 and T3E-900 

computers were performed at NERSC. We thank the Livermore Computing Center staff 

and the NERSC staff for their able assistance; help from Chris H.Q. Ding of NERSC is 

especially noteworthy. This work was performed under the auspices of the U.S. 

Department of Energy by the University of California Lawrence Livermore 

National Laboratory under contract No. W-7405-Eng-48. 



20 

References 

‘T.D. Rognlien, P.N. Brown, R.B. Campbell, et al., Contrib. Plasma Phys. 34, 362 (1994). 

2Xueqiao Xu and Ronald H. Cohen, Contrib. Plasma Phys. 38, 158 (1998). 

3A.C. Hindmarsh and A.G. Taylor, “PVODE and KINSOL: Parallel Software for Differen- 

tial and Nonlinear Systems,” Lawrence Livermore National Laboratory Report UCRL- 

ID-129739, Feb. 1998. 

4P.N. Brown and A.C. Hindmarsh, J. Appl. Math. Comp. 31, 40 (1989). 

5P.N. Brown and Y. Saad, SIAM J. Sci. Stat. Comput. 11, 450 (1990). 

‘W D Gropp, E. Lusk, and A. Skjellum, Using MPI Portable Parallel Programming with . . 

the AJessage-Passing Interface, The MIT Press, Cambridge, MA, 1994. 

‘Y. Saad, Num. Lin. Alg. Applic. 1, 387 (1994). 

8Yousef Saad, Iterative Methods for Sparse Linear Systems, P\‘I’S Publishing Co., Boston, 

MA, 1996. 

‘P.F. Dubois, et al., “The Basis System”, Lawrence Livermore National Laboratory Report 

UCRL-MA-118543, parts 1-6, 1994. 

“Mark Lutz, Programming Python (O’Reilly & Associates, Sebastopol, CA 1996). 

‘lD.P. Grote, private communication, 1998. 

r2T-Y.B. Yang, private communication, 1998. 

13S.I. Braginskii, “Transport Processes in a Plasma”, in Reviews of Plasma Physics, Vol. I, 

Ed. M.A. Leontovich (Consultants Bureau, New York, 1965), p. 205. 

r4J.A. Wesson, Tokamaks, 2nd Edition (Oxford University Press, Oxford, U.K., 1997). 

15C. William Gear, Numerical Initial Value Problems in Ordinary DiSferential Equations 

(Prentice-Hall, Englewood Cliffs, NJ, 1971). 

16T D . . Rognlien 1 X.Q. Xu, A.C. Hindmarsh, P.N. Brown, and A.G. Taylor, “Algorithms 

and Results for a Parallelized Fully-Implicit Edge Plasma Code,” Int. Conf. Num. Sim. 

Plasmas, Feb. 10-12, 1998, Santa Barbara, CA.; LLNL Report UCRL-JC-129223-abs. 



21 

17E T Chow, private communica.tion, 1998. . . 

I’M E . . Rensink L LoDestro, G.D. Porter, T.D. Rognlien, and D.P. Coster, Contrib. Plasma 1 . 

Phys. 38, 325 (1998). 

“D. Reiter, 3. Nucl. Mater. 196-198, 80 (1992). 

2oJ.L. Luxon, P. Anderson, F. Batty, et al., in Proc. 11 ” Int. Conf. Plasma Phys. Controlled 

Nucl. Fusion (IAEA, Vienna, 1987), p. 159. 

21X.Q. Xu, R.H. C o h en, T.D. Rognlien, a.nd J.R.Myra, Phys. Plasmas 7, no.5 (2000). 

22X.Q. XII, R.H. Cohen, G.D. Porter, T.D. Rognlien, D.D. Ryutov, J.R. Myra, 

D.A. D’Ippolito, R. Moyer, and R. J. Groebner, Nucl. Fusion 40, 731 (2000). 

“N. Mattor, T.J. Williams, and D.W. Hewett, Parallel Computing 21, 1769 (1995). 



22 

Figures 

FIG. 1. The toroidal tokamak geometry simulated by the UEDGE and BOUT codes. In 

a), the poloidal plane plot shows the 2-D edge region simulated by UEDGE and the 

mesh used which has one coordinate based on magnetic flux surfaces as provided by an 

MHD equilibrium code. In addition to simulating the poloidal annulus in a), BOUT 

also allows fluctuations to have toroidal variations which fit periodically into the toroidal 

segment shown from the top view in b). Thus, inclusion on longer toroidal wavelength 

modes requires using a larger toroidal segment at increase computational cost. 

FIG. 2. The poloidal plane is divided into 4 main regions for the domain decomposition 

model, each of which can be further subdivided. The 4 regions are mapped into the 

rectangular geometry shown in the lower part of the figure by opening the poloidal 

configuration along the dotted line. 

FIG. 3. Division of UEDGE geometry into 16 regions is shown in a); in b), more detail of 

the mesh is shown within the domains together with the overlapping guard cells. 

FIG. 4. Schematic showing the three major components of the parallel UEDGE code as 

replicated on each domain or processor. 

FIG. 5. Comparison of time to reach a steady state solution for the parallel. UEDGE run 

on the T3E-600 parallel computer with 1 processor and 16 processors for the plasma 

equations with PVODE. The point labeled X uses the PVBBDPRE preconditioner and 

the + point uses the internal UEDGE preconditioner. The table gives the number 

of function evaluations, preconditioner evaluations, and the normalized time to steady 

state. 

FIG. 6. Time step allowed in BOUT over the course of a time dependent simulation show- 

ing the improvement obtained with new Krylov solver PVODE (or CVODE on serial 

computers) compared to the previously-used functional iteration method. 

FIG. 7. Comparison of speed of parallel BOUT runs on the LLNL SUN Wildfire system 

with 16 processors per machine. Only poloidal decomposition is used with no precon- 

ditioner. The drop from 15 to 30 processors is due to communication needed between 



23 

two computers; this may be caused by slow message passing or non-optimization of 

scheduling. 

FIG. 8. Comparison of speed of BOUT runs with various numbers of processors on the 

NERSC CRAY T3E-900. Only poloidal decomposition is used with no preconditioner. 

The super-linear behavior, or off-set linear curve, is likely caused by better utilization 

of fast cache memory for a large number of processors. 



b) 

interior 
guard 
cells only 
used to 
pass data 

Fig. 3 



FORTRAN PHYSICS SOURCE 

domain 1 

UEDGE 
transport 

code 
(geom., etc.) 

-------___. 

Right-hand side 
and 

preconditioner 

FORTRAN 
< --> c 

ITERFACE 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

_i 
I 
I 
I 
I 
I 
I 

I 
I 

F --> C PVODE & 
KINSOL 

matrix-free 
Krylov 
solvers 

F <--> C 

4 

I 

--t------- ---~-+-~-~~--‘------- 
v 

C SOLVER 

domain 2 

UEDGE 
transport 

code 
(geom., etc.) 

--------__ 

Right-hand side 
and 

preconditioner 

t 

mpi send 
and 

receive 

-1 

4 -_------------ _-____- . 1 . 
. 

domain 3 

I 
+a-+ F --> C 

+-El, F <--> C +--b 

L 

-. 

PVODE & 
KINSOL 

matrix-free 
Krylov 

solvers 

4’ 



0.03 - 

1 
I I I I,,, I 
3 10 30 

Number of processors 

Num. PEs Func. eval Prec. eval Nrm. time Ideal time 

1 (0) 2236 9 1.0 1.0 
16 (x) 9803 24 0.168 0.0625 
16 (+) 5760 67 0.118 0.0625 

Fig. 5 



IO0 

-. 

g -1 
jfj 10 Linear 

E .I 
- 3 n 

stage 

Func. iter. 

1 stage 1 

* / \ A 
/ \ I \ 

I I I I 5 5 ' I 

0 20 40 7300 7320 7340 

Normalized time, Wci t 

Fig.6 




